R-585-9-5-28

APPROVED BY

A FIELD TRIP REPORT FOR LEVITTOWN DUMP PREPARED UNDER

TDD NO. F3-8504-12 EPA NO. PA-282 CONTRACT NO. 68-01-6699

FOR THE

HAZARDOUS SITE CONTROL DIVISION U.S. ENVIRONMENTAL PROTECTION AGENCY

JANUARY 9, 1986

NUS CORPORATION SUPERFUND DIVISION

SUBMITTED BY

BIOLOGIST/PUBLIC

HEALTH SPECIALIST

REVIEWED BY

MANAGER, FIT III ASSISTANT MANAGER

Site Name: Levittown Dump TDD No.: F3-8504-12

ORIGINAL (Red)

TABLE OF CONTENTS

SECTION		PAGE
1.0 1.1 1.2 1.3	INTRODUCTION AUTHORIZATION SCOPE OF WORK SUMMARY	1-1 1-1 1-1 1-1
2.0 2.1 2.2 2.2.1 2.2.2 2.3 2.4 2.5	FIELD TRIP REPORT SUMMARY PERSONS CONTACTED PRIOR TO FIELD TRIP AT THE SITE SAMPLE LOG SITE OBSERVATIONS PHOTOGRAPH LOG	2-1 2-1 2-1 2-1 2-2 2-4 2-5
3.0 3.1 3.2 3.2.1 3.2.2	LABORATORY DATA SAMPLE DATA SUMMARY QUALITY ASSURANCE REVIEW ORGANIC INORGANIC	3-1 3-1 3-2 3-2 3-6
4.0 4.1 4.2 4.2.1 4.2.2	TOXICOLOGICAL EVALUATION SUMMARY SUPPORT DATA HOME WELLS SURFACE WATERS	4-1 4-1 4-2 4-2 4-5
APPENDIC	<u>CES</u>	
A	COPY OF TDD	A-1
В	1.0 MAPS AND SKETCHES1.1 SITE LOCATION MAP1.2 HOME WELL SAMPLE LOCATIONS1.3 SURFACE WATER SAMPLE LOCATIONS1.4 PHOTOGRAPH LOCATION MAP	B-1
С	QUALITY ASSURANCE SUPPORT DOCUMENTATION	C-1
D	LABORATORY DATA SHEETS	D-1
E	HOME WELL SURVEY	E-1

SECTION 1

Site Name: Levittown Dump

TDD No.: F3-8504-12

जिल्ला**NAL** (Red)

1.0 INTRODUCTION

1.1 Authorization

NUS Corporation performed this work under Environmental Protection Agency

Contract No. 68-01-6699. This specific report was prepared in accordance with

Technical Directive Document No. F3-8504-12 for the Levittown Dump located in

Levittown, Pennsylvania.

1.2 Scope Of Work

NUS FIT III was tasked to conduct a resampling at the subject site. Prior to on-site

work, the FIT was to obtain residential well and local water supply information.

1.3 Summary

The Levittown Dump is located near the intersection of U.S. Route 13 and

Levittown Parkway in Levittown, Pennsylvania. The site area was originally

operated as a quarry and was then filled with water until it was a lake. The lake

was eventually emptied and used as a landfill from the early 1960s to 1974. The

landfill accepted both municipal and industrial wastes. No records of hazardous

waste disposal are known to exist. Past environmental sample results, collected by

FIT III from the area of the site, indicate the possible presence of lead,

chloroethane, di-n-butyl phthalate, and bis(2-ethylhexyl) phthalate at the site,

although insufficient data exist to definitively link the contaminants with the site.

Subsequent to the past sampling activities at the site, it was learned that a number

of private domestic wells were still being used. Additionally, EPA was informed of

an unusually high number of cancer cases in the Tullytown population by members

of F.U.S.E., a local citizens group. In light of these facts, it was decided that a

resampling of the site was warranted.

1-1

Results of the sampling activities indicate the presence of low levels of chlorinated aliphatics and/or chlorobenzene in 7 of the domestic wells which were sampled. Additionally, polycyclic aromatic hydrocarbons (PAHs) and chlordane were detected in sediment samples obtained from the Levittown Lake and the Delaware (Pennsylvania) Canal.

SECTION 2

Site Name: Levittown Dump

TDD No.: F3-8504-12

ORIGINAL (Red)

2.0 FIELD TRIP REPORT

2.1 Summary

On Tuesday, April 23, 1985 and Wednesday, April 24, 1985, FIT III staff members Bruce Pluta, Michael Cramer, Judith Delconte, and Randall Dickinson conducted a resampling of the Levittown dump. FIT III was assisted by Harold Byer and Douglass Hill, of EPA Region III.

2.2 Persons Contacted

2.2.1 Prior to Field Trip

Douglass Hill U.S. EPA 841 Chestnut Building Ninth and Chestnut Streets Philadelphia, PA 19107 (215) 597-8541

Stanley Paulokich Pennsylvania Fish Commission Lititz, PA 17543 (717) 626-0228

Barbara Eklof Manager Levittown Discount World Route 13 and Levittown Parkway Levittown, PA 19055 (215) 946-1150

Douglas Hoehn
Park Superintendent
Roosevelt State Park
Upper Black Eddy, PA 18972
(215) 982-5560

William Willsey Director-Environmental Affairs Philadelphia Electric Company 2301 Market Street, 59/2 P.O. Box 8699 Philadelphia, PA 19101 (215) 841-5030

Waterways Patrolman Pennsylvania Fish Commission New Hope, PA 18938 (215) 862-5301

Father Dunlevy Saint Michael the Archangel Roman Catholic Church Levittown Parkway Levittown, PA 19055 (215) 945-1166

Site Name: Levittown Dump
TDD No.: F3-8504-12
(Red)

2.4 Site Observations

o The fence surrounding the site had been breached in many places. No fence was present along the northern boundary of the site.

- o Overall, the site is well vegetated with grasses and trees (primarily sumac).

 The northern and eastern areas of the fill were the most heavily vegetated.
- o Surface debris was noted in numerous locations. In addition to household refuse, rolls of paper (each measuring approximately 4 by 2.5 feet) were exposed at the surface of the fill. The latter observation indicates the settling and compaction of the cover material.
- o In a small section of the western portion of the fill, measuring a maximum of 50 by 50 feet, evidence of a relatively recent debris and brush fire was observed.
- o No evidence of leachate was observed at any location at the landfill.
- o The only area of stained soil appeared to be attributable to spilled motor oil.

TARGET COMPOUNDS

Organic

☐ Inorganic

te 1 La 1 No P

	1 .			,							Compou	ınds Dete	cted)		
<u></u>	: none detection l		st i mad			/ /	Mety/phong	De Cally Tong	J. John J.		20 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		100 MM/00 00 00 00 00 00 00 00 00 00 00 00 00	To the S	*} *} /	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25%		
	Sample Description and Location	Phase	Units	No. C.	4 A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		a de	And Johnson					<i>t</i> / c		(2) 4 (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	2 5 5 1	Remarks	
CA 104	NE Lake Such	AQ	ug/L																
CA 105	NE LAKE Mid	AQ	ug/e																
CA 106	NE LAKE But	AQ.	ug/L																
1	NE LAKe	SO	ug/kg	70 US	190 05		150J F	270		460	520		IW UT	290	600	340			
CA108	SE LAKE SUEF	AQ	ugy																
CA 109	SE Lake Mid	AQ	ug/L						·										
CA 110	SE LAKE BOT	AQ	ug/L								10 m								
CA176	SE LAKE	, 50	ug/kg	72 UJ	140 05					76 J	68 2		47. US						
CA 177	SW LAKE BOT	AQ	ug/L																
CA178	SW LAKE	so	lig/kg	64 55	150 UJ					IIOJ	1307		43: VI						
CA179	FAR LAKE	AQ	ug/																
CA 180	FAX Lake sed.	SO	ug/kg	85 UJ	156 UJ		480 F	476	200	720	1200	550 F	340	630	680	420			
CA 181	Canal upstream	AQ	13/L																
CA182	Capual downsteepan	50	ugy	81 UJ		580 F				1507	120J		39.03						

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

- J-Approximate value: Detected below quantitation limit.

II - Indistinguishable Isomers

Solid sample results reported as wet weight

F - Denotes quantitative approximation based upon Quality Assurance review.

 $[\]Diamond$ Denotes results of questionable qualitative significance based upon quality assurance review of data.

, п	بار <u>:3</u> 3 م	•					4	KGE7	110	U				Site Na	me <u>ــــــــــــــــــــــــــــــــــــ</u>	unothin	DUMP		
EPA Num	$\frac{3}{100} = \frac{3}{100} = \frac{3}$			_			Ø	Organic	🗆 in	organic			a	Date of Sample 4/24/85					
บร:	None detects detection limit	d:est t.	mated		_	7	\signal \signa	130	/.8	/ _g ,	Compou	ands Dete	eted Wash	£ 2				7	
Sample	Sample Description and Location	ı	Units	Reth C	10 0 V	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Jack Holling H	Continue of the second	Tanthen A.	100 / 12 / 12 / 12 / 12 / 12 / 12 / 12 /	The state of the s		18 S.				Remarks		
CA 183	CANAL downstream	AQ	49/6	.^															
CA 184	CAMAL UPSTREAM	50	ug/kg	110 11						63J	83J		♦ 25 IJ Ţ						
CA 185	Blank	AQ	19/1																
														·					
												٠							
										<i>f</i> .						·			
		<i>'</i>																	
								~											
															,				
	•																	R	
OTE: F	or a review of this da	ta and no	n-target,	tentative	ly identi	fied comp	oounds, pl	ease see	the Anal	ytical Qu	ality Assu	rance sec	tion of th	nis report				Religi	

Solid sample results reported as wet weight.

J-Approximate value: Detected below quantitation limit.

Oenotes results of questionable qualitative significance based upon quality assurance review of data

SAMPLE DATA SUMMARY -MP≟ .-

🔀 Organic

☐ Inorganic

Site Name * Levi Holin Durip

Date of Sample 4/24/85

		Compounds Detected															
				/.	Remarks												
Sample Number	Sample Description and Location	Phase	Units	1700/			7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3								Remarks
CA104	NE Lake Such	AQ	19/1														
CA105	NE LAKE Mid	AQ	ug/ ₊														
CA106	NE LAKE But	AQ	ug/1														
CA 107	NE LAKE	so	lug/kg	1807	320	910	28N	13 N	58		75 A						
CA108	SE LAKE SUG	Pa	49/1							7 V		N J					
CA109	SE Lake Mid	AQ	49/1						•	14%	40 ₹124						,
CA110	SE LAKE BOT	AQ	ug/1								**************************************						
CA 176	SE Lake	50	49/19					a		44.91							
CA177	SW LAKE BOT	AQ	lug/1										·				
CA 179	SW LAKE	50	ug/kg				8.3N	6.8									
CA179	FAR LAKE	AQ	ug/1														
CA 180	Fax Lake sed.	SO	49/Kg	<i>8</i> 90	570		36N	21	65								
CA 181	Canal upstream	AQ	49/1														
CA 182	Carial downsteeam	SO	ug/reg														02151 (Reg

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

N-Evidence for presence of material is presumptive

J-Approximate value: Detected below quantitation limit.

Fi 504

EPA Number PA - 383

Openotes results of questionable qualitative significance based upon quality assurance review of data.

SAMPLE DATA SUM

EPA Number

☑ Organic ☐ Inorganic

Site Name Leviloun UNP 1

		Compounds Detected																
					Remarks													
Sample Number	Sample Description and Location	Phase	Units	Inden	100	7 7	>/ x	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7/3	<u>_</u>			_				Remarks	
CA183	CANAL downstream	AQ	49/1															
CA 184	CANAL UPSTREAM	SÕ	ug/kg															
CA 185	Blank	AQ	ug/1															
															*			
										·	÷	-						
										• .								
		, ,									1							
													·					
											<u> </u>							
	•																ORIG (Re	

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

Solid sample results reported as wet weight J-Approximate value: Detected below quantification limit.

N-Evidence for presence of material is presumptive.

[♦] Denotes results of questionable qualitative significance based upon quality assurance review of data.

Organic

Inorganic

		Compounds Detected															
				/	· Share	/ 3/	/,,/		13.7	W.	\ s/						, , ,
Sample Number	Sample Description and Location	Phase	Units	<u></u>	J. H. H. J.	S. W. O.		Sing!		Turium &	A C	Series Co		Stay S	<u> </u>	R. Pr	Remarks
MCB334	NE LAKE SUF	AQ	ughl	87.			28.	1.3		13000,	4.7		15.05	96,US		55°0,	
MCB 335	NE LAKE Mid	AQ	ug/l	82.			28.	1. 3		13200.			17.45	100 UJ		5570.	
336	NE LAKe bot	AQ	ng/l	81,			28.			12700.			15 UJ	114.45		5420.	
MCB 338	SE LAKE SURE.	AQ	ugll	95.			27.	1.5		12500.			14 UJ	10545		5300,	
мсв 339	SE Lake mid	AQ	49/1	108.			28,	1.8		12600,			16.45	137.	11.	5350	
MCB 340	SE. LAKE bot	AQ	ught	7/.			28,	1.8		13100.			13,UJ	1084J		5550,	
MCB 342	SW LAKE bot	AQ	ng/l	80,			27.			12700.			12,UJ	105		53%.	diplicate of MCB340
мсв 344	FAR LAKE	AQ	uall	97,			27.	1.5		13300.			15.UJ	123		5640.	
MCB 346	CANAL upstream	AQ	ughl	482.			24.	1.8		15700.			12 ·UJ	646.	6.5	5840,	
mcB 348	CANAL doubteam	AQ	ng/l	326.			20.	1.5		13300.			8.6.45	618.	10.	49%,	
икв 350	Blank	AQ	ugH	3/.				/.3		16.			8.4	27.		24.	
337	NE LAKE	sol.	mg/KG	19900.	39.	15.	123.			1550,	33.	22.	39.	27600	246.	4320,	
mcB 341	SE LAKE	sol.	mglkg	18300.	34.		116.			1330.	27.	17.	39.	236∞•	300.	4160,	
mKB 343	sw LAKE	soli	mg lkg	30600·	49		144.			1650.	39.	λ3·	5%	29 kg.	410.	5130.	deplicate of the Ball

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

[♦] Denotes results of questionable qualitative significance based upon quality assurance review of data.

SAMPLE DATA SUMMARY TARGET COMPOUNDS

Organic Inorganic

Site Name Levi Hows Damps

Date of Sample 4. 24. 35

Compounds Detected Charle. Kell M Sol Mark Sample Description and Location Phase Units Remarks Number MCB 10200. 55UJ 20. 1800. NE Lake SURF 1680. 10200 55.43 21. AQ NE Lake Mid MCB 9980 27. 1600. 55W AQ 336 NE LAKE bot MCB 55,45 AQ 19701 3.8 9760. 20. SE LAKE SURF 338 MCB 19. SSUS 1190, 9730. AQ 339 GE LAKE M'Z MCB 55.05 AQ 1760. 21. 10100. ielake hot 340 MCB 55.US 1510. 9730. ngll AQ 20. SW Lake bot MCB 55,45 FAR LAKE AQ 22. 1780 10200. MCB 7990, 55.US 894. 4.4 57. AQ CANAL PSTREAM 346 55.45 6690. AQ 54, 724. Compl downstream MCB 39, AQ Blank 350 MCB ng/kg 37,4 133. 308 BOL 25.R 5% 264. 30. NE LAKe 337 MCB 345. 193. 2241 1170. 32. SE Lake 37.0 341

54.

438.

27.2

25.R

203.

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

36.

1170.

266.

MCB.

SW LAKE

[♦] Denotes results of questionable qualitative significance based upon quality assurance review of data.

SAMPLE DATA SUMMARY TARGET COMPOUNDS

TDD Number

Site Name Levit four Dump

Date of Sample 4-24-85

			Compounds Detected															
	. :			/	· KINE	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ .u/		J. J.	, wr/	*/	L L ST	/,/	/_/	/ /	/ /		
Sample Number	Sample Description and Location	Phase	Units	/ N	J. H. H. K.	Line of		Sind Si		O LIME OF	3/2	Sept of	\$ S	Serve S	y y	R N	Remarks	
mcd 345	Far Lake Sed	Sol.	nglkg	17400.			130			/370,	44.	25.	42,	2570a	470.	4340,		
MCB 347	Change downistrian scal	soli	malka	7220.	22		56.	1.1		978.	12.	7.7	18,	11700.	38	2270		
MCB 349	Condusteen sed	Soli	mg/kg	5460.	29,		40,			2380,	12,	3,3	16,	10460.	8.0	22801		
																		一
												 		1	Ì			一
													 	T	1	1		Red

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

 $[\]diamondsuit$ Denotes results of questionable qualitative significance based upon quality assurance review of data.

SAMPLE DATA SUMMARY TARGET COMPOUNDS

Organic Inorganic

Site Name Louistown Pump

Date of Sample 4-24:35

Compounds Detected Res State of the s And Market call in the case of the case o Sol Market Sample Sample Description
Number and Location Remarks Units Phase 20,R 36.0 MCB 885. 39, /38, sal. 273, 53, 526. FAR Lake sed 345 MCB 98, 86, 18, sol. malka 58.1 122. 22. 347 63.9 MCB 17% 14. 9.7 104. 208 349 Caugi poter sed

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

TDD Number 8504-12 EPA Number 605e # 4248 01-282

O Denotes results of questionable qualitative significance based upon quality assurance review of data-

Site Name: Levittown Dump
TDD No.: F3-8504-12
Rem

3.2 Quality Assurance Review

3.2.1 Organic Data: Lab Case 4248

3.2.1.1 Introduction

The organic analysis for this case was performed by 3 CLP laboratories. The findings offered in this report are based upon a detailed review of all available data, blank analysis results, surrogate and matrix spike recoveries, laboratory duplicate results, calibration data, evaluation of confirmations, target compound matching quality, and tentatively identified compounds.

3.2.1.2 Qualifiers

It is recommended that this data package be utilized only with the following qualifier statements.

o The following results are qualitatively questionable:

Compound	Samples with Questionable Results
methylene chloride	All positive sample results
acetone	All positive sample results
2-butanone	All positive sample results
2-hexanone	CA190
bis(2-ethylhexyl) phthalate	All positive sample results, except CA180
4,4'-DDT	CA107
4,4'-DDD	All positive sample results
4,4'-DDE	All positive sample results

Site Name: Levittown Dump
TDD No.: F3-8504-1 ORIGINAL
(Red)

The aforementioned sample results were designated questionable because there is evidence to doubt the presence of these compounds at concentrations less than or similar to the levels reported. However, with certain exceptions noted below, it can be assumed that concentrations substantially greater than the levels reported cannot be present.

o Although qualitatively confident, the following quantitative results represent approximate concentrations.

Compound	Applicable Samples
chloroethane	CA190, CA195, and CA197
1,1-dichloroethane	CA201
4-methylphenol	CA182
acenaphthylene	CA107 and CA180
benzo(a)anthracene	CA180

- o The reported detection limits for 2-chloroethyl vinyl ether in samples CA188, CA189, CA190, CA191, CA192, CA193, CA194, CA195, CA196, CA197, CA198, CA199, CA200, and CA201 are unreliable and may be substantially higher than reported.
- o The reported detection limits for benzo(ghi)perylene in samples CA104, CA105, CA106, CA108, CA109, CA110, CA177, CA179, and CA181 are unreliable and may be substantially higher than reported.
- o The reported detection limits for benzidine in samples CA107, CA176, CA178, CA180, CA182, CA104, CA105, CA106, CA108, CA109, CA110, CA177, CA179, CA181, CA183, and CA185 are unreliable and may be substantially higher than reported.
- o The actual detection limit for some acid compounds may be slightly higher than reported for samples CA189, CA191, CA194, CA196, CA198, CA199, and CA200.

Site Name: Levittown Dump
TDD No.: F3-8504-12 ORIGINAL
(Red)

o The actual detection limit for some acid compounds may be substantially higher than reported for samples CA192, CA195, and CA201.

- o The actual detection limit for di-n-butyl phthalate may be slightly higher than reported in sample CA183.
- o The actual detection limit for aldrin may be substantially higher than reported in sample CA104.
- o The actual detection limits for CA188 may be slightly higher than reported for 4-nitrophenol and phenol and may be substantially higher than reported for pentachlorophenol.
- o Tentatively identified compounds of confident matching quality, which are not suspected artifacts, are listed on the appropriate page in the support documentation appendix to this report.

3.2.1.3 <u>Findings</u>

- o Field and/or laboratory blank revealed the presence of methylene chloride, acetone, 2-butanone, 2-hexanone, and bis(2-ethylhexyl) phthalate at sufficient levels to question the aforementioned sample results for these compounds.
- o Results for 4,4'-DDT and related compounds were questioned since the method of identification relies in a single peak response on dual GC columns. Results may be artifacts of chromatographic interferences.
- o The aforementioned sample results for chloroethane, 1,1-dichloroethane, 4-methylphenol, acenaphthylene, and benzo(a)anthracene should be considered estimates because the associated continuing calibration standard revealed a response factor with a high percent difference compared to the initial calibration standard.

Site Name: Levittown Dump
TDD No.: F3-8504-12 Mighal
Total

o Extremely low response factors were noted for 2-chloroethyl vinyl ether, benzo(ghi)perylene, and benzidine in the calibration standards associated with the aforementioned samples. As a result, the detection limits for these compounds are unreliable for the aforementioned samples.

- o Low recovery was reported for the acid surrogate compound D₅ phenol in samples CA189, CA191, CA194, CA196, CA198, CA199, and CA200.
- o Zero recoveries were reported for all 3 acid surrogate compounds in samples CA192, CA195, and CA201.
- o Low recovery was reported for the matrix spike compound di-n-butyl phthalate in sample CA183.
- o Zero recovery was reported for the matrix spike compound aldrin in sample CA104.
- o Low recoveries were reported for the matrix spike compounds 4-nitrophenol, phenol, and pentachlorophenol in sample CA188.
- o It is particularly noteworthy that a herbicide tradename, Norea^R, was confidently identified in samples CA188 and CA195. A more detailed description of this compound can be found on the appropriate page in the Support Documentation appendix to this report.

3.2.1.4 Summary

The attached Quality Assurance Review has identified the aforementioned areas of concern. The text of this report has been formatted to address only those problem areas which affect the application of the data to the subject investigation. Documentation of these problems and also documentation of any observed areas of contractual noncompliance are included in the attached Support Documentation appendix to this report.

Report prepared by Rock J. Vitale

Date: August 9, 1985

Site Name: Levittown Dump
TDD No.: F3-8504-120RIGINAL
(Red)

3.2.2 Inorganic Data: Lab Case 4248/1644C

3.2.2.1 Introduction

The findings offered in this report are based upon a general review of all available inorganic laboratory data. Blank analysis results, matrix spike results, field and laboratory duplicate analysis results, quantitative calculations, and quality assurance documentation were examined in detail. In particular, several other samples (MCB334 through MCB350) are addressed in a separate report from Region III CRL.

3.2.2.2 Qualifiers

It is recommended that this data package be utilized only with the following qualifier statements:

o The following results are deemed questionable:

Compound	Samples with Questionable Results
aluminum	MCB362
cobalt	MCB359 and MCB364
iron	MCB361 and MCB364
mercury	MCB364
potassium	All positive sample results, except MCB352, MCB359, MCB361, MCB364, and MCB365

The aforementioned results were designated questionable because there is evidence to doubt the presence of these constituents at concentrations less than or similar to the levels reported. However, with the exceptions noted below, it can be assumed that concentrations substantially greater than the levels reported cannot be present.

o The actual detection limit for silver in all samples may be higher than reported.

Site Name: Levittown Dump TDD No.: F3-8504-120RIGINAL

o The actual detection limit for tin in sample MCB353 may be higher than reported.

3.2.2.3 Findings

- o Field and/or laboratory blank analysis revealed the presence of aluminum, cobalt, iron, mercury, and potassium at sufficient levels to question the aforementioned sample results for these constituents.
- o The laboratory control standard associated with all samples revealed low recovery for silver.
- o Low recovery was reported for the matrix spike constituent tin in sample MCB353.

3.2.2.4 Summary

The text on this report has been formatted to address only those problem areas which affect the application of the data to the subject investigation. These problem areas have been identified as blank contamination and poor matrix spike and laboratory control standards recoveries as the primary areas of concern. Documentation of these problems and also documentation of any observed areas of contractual noncompliance are included in the attached Support Documentation appendix to this report.

Report prepared by Rock J. Vitale Luch J. Utale Date: August 13, 1985

Site Name: Levittown Dump
TDD No.: 8504-12

32.2 Inorganic Data Lab Case 4248

3.2.2.1 Introduction

The findings offered in this report are based upon a review of all available sample data, blank results, matrix spike and duplicate analysis results, ICP interference QC, calibration data, and quality assurance documentation.

3.2.2.2 Qualifiers

It is recommended that this data package be utilized only with the following qualifier statements:

° The results which may be qualitatively questionable are listed below:

Constituent	Samples With Questionable Results
Copper	MCB334, MCB335, MCB336, MCB338, MCB339, MCB340, MCB342, MCB344, MCB346, MCB348
Iron	MCB334, MCB335, MCB336, MCB338, MCB340, MCB342, MCB344
Zinc	MCB334, MCB335, MCB336, MCB338, MCB339, MCB340, MCB342, MCB344, MCB346, MCB348

- The aforementioned results were designated questionable since there is evidence to doubt the presence of these constituents at any concentration less than or equal to the levels reported. However, it can be assumed that concentrations significantly greater than the levels reported for these samples cannot be present.
- Detection limits for silver in the aqueous matrix may be elevated by 40-60%.
- Actual detection limits for antimony in the water matrix and tin in the solid matrix may be significantly higher than reported. Reported results for tin in the solid matrix could be biased significantly low.

3.2.2.3 Findings

Field blank analysis revealed the presence of copper, iron, and zinc at levels sufficient to question the aforementioned results for these parameters.

Site Name: Levittown Dump
TDD No.: 8504-12

 Low matrix spike recovery was reported for silver (51%) in the aqueous matrix.

 $^{\circ}$ Extremely low matrix spike recovery was reported for antimony (0%) in the water matrix and for tin (9%) in the solid matrix.

3.2.2.4 Summary

This Quality Assurance Review has identified the following areas of concern; field blank contamination and poor matrix spike recovery.

Please see the accompanying support documentation appendix for specifics on this Quality Assurance Review.

Report prepared by Steve L. Markham: Steve L. Markham Date: 7-17-85 (301)224-2740, FTS 922-3752 SECTION 4

Site Name: Levittown Dump
TDD No.: F3-8504-LERIGINAL
(Red)

4.0 TOXICOLOGICAL EVALUATION

4.1 Summary

Low levels (up to 25 ug/l) of several chlorinated aliphatics (chloroethane, 1,1-dichloroethane, 1,1,1-trichloroethane, trichloroethene, tetrachloroethene, and chloroform), some of which have evidence of animal carcinogenicity, and/or chlorobenzene were reported in samples from 7 local domestic wells. The lifetime daily ingestion of 2 liters of the local groundwater could potentially pose a cancer risk of up to 1.7 in 100,000. With the possible exception of the concentration of manganese reported in the (19,600 ug/l), there were no heavy metals reported at levels of concern to human health in home well samples. The not currently used as a potable water source. Levels of iron (388 to 2,110 ug/l) and manganese (52 to 19,600 ug/l) reported in some home well samples could, however, adversely affect the taste and odor of the water. The levels of sodium measured in several home wells (17,000 to 105,000 ug/l) could be of potential concern to individuals on sodium-restricted diets.

PAHs (up to 6,550 ug/kg total) and chlordane (up to 65 ug/kg) were reported in sediment samples from the site-adjacent canal and lake, both of which are used for recreational fishing. Chlordane and some PAHs have evidence of animal carcinogenicity. Chlordane strongly bioaccumulates in aquatic food chains. The analysis of resident fish tissue would be necessary to determine whether there are levels of chlordane, and possibly PAHs, that might pose a health risk to fish consumers.

There was insufficient information available to determine whether the groundwater and surface water contamination might be site related.

4.2.2.1 Organics

PAHs were identified in sediment samples from the lake (up to 6,550 ug/kg total) and the upstream (146 ug/kg) and downstream (270 ug/kg) sampling locations from the canal. Chlordane (up to 65 ug/kg) was identified in sediment samples from the lake. 4-Methylphenol (approximately 580 ug/kg) was measured in the downstream sediment sample from the canal. There were no organic priority pollutants reported within quantifiable limits in aqueous samples from the lake or canal.

Chlordane is highly persistent in the environment and strongly bioaccumulates in aquatic food chains. BCFs on the order of 1,000 to 10,000 have been reported for aquatic organisms, including species of fish. 10 Although chlordane was not reported at or above the minimum quantifiable limit of 0.5 ug/l in aqueous samples, it is possible that it might have been present at lower concentrations. For the sake of perspective, a rough estimate of the concentration of chlordane in the lake can be calculated by dividing the sediment level by the soil adsorption coefficient (30,000). The estimated value, 0.0017, is only slightly less than a Freshwater Final Residue Value of 0.0043 ug/l which has been derived to prevent chlordane from accumulating in the tissues of edible fish at levels exceeding the action level (0.3 mg/kg) established by the U.S. Food and Drug Administration for the marketability of fish. It can be calculated that the lifetime ingestion of 6.5 g of seafood per day from water containing 0.0017 ug/l of chlordane could pose a carcinogenic risk of 3.5 in 1,000,000. The estimated value is notably below a Final Chronic Value of 0.17 ug/l, which has been determined for the protection of freshwater aquatic life. 11

Site Name: Levittown Diverty
TDD No.: F3-8504-12

In general, PAHs are not highly persistent in surface waters. In the aqueous phase, they are degraded by photolysis and, to a lesser extent, by oxidation. Those in the sediment can undergo biodegradation and biotransformation by benthic organisms. 6 However, if incorporated into sediments below the aerobic surface layer where biodegradation is slow, PAHs may remain for long periods of time. PAHs can enter food chains from sediments via sorption by plants and by ingestion by bottom-feeding organisms. Although bioconcentration factors (BCFs) of up to approximately 134,000 have been reported for invertebrates, BCFs for vertebrates tend to be lower; a value of 30 is considered typical of fish. PAHs tend to be rapidly metabolized and excreted, and there is no evidence for their long-term bioaccumulation. However, the regular ingestion of fish from PAH-contaminated water might be a potential source of some concern to consumers. A number of PAHs, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene, which were identified in sediment samples from the lake, have evidence of animal carcinogenicity. Pyrene and benzo(g,h,i)perylene, lake sediment samples, have evidence of identified in canal and/or cocarcinogenicity in animals.8 Although PAHs were not reported at or above contract required minimum quantifiable limits (20 to 40 ug/l) in aqueous samples, it is possible that concentrations below these limits may be present. Based on rough calculations similar to that described for chlordane, the PAH concentration in the lake would be expected to be less than 0.5 ug/l. It can be calculated that the lifetime ingestion of 6.5 g of seafood per day from water containing 0.5 ug/l PAHs (total) could pose a carcinogenic risk of approximately 1.6 in 100,000.8

The possibility that PAHs and/or chlordane may be present in the tissues of fish, particularly those in the lake, at concentrations that may be of potential concern to regular consumers of resident fish cannot be ruled out. The analysis of fish tissue would be necessary to further assess this possibility.

Neither PAHs nor chlordane would be expected to infiltrate the groundwater. Their water solubilities are low and/or they tend to sorb to organic materials in sediments.

4-Methylphenol, measured at 580 ug/kg in the downstream sediment sample from the canal, would not be expected to pose a hazard to aquatic life or its consumers. It is biodegradable, and would not be expected to persist in surface waters or bioaccumulate. It is, however, slightly soluble in water and might potentially infiltrate the groundwater. With the exception of 4-methylphenol, which was detected only in the downstream sediment sample of the canal, the levels of priority pollutants measured in up- and downstream canal samples were similar.

4.2.2.2 Inorganics

There were no inorganics reported at unusual levels in aqueous samples from the lake or canal. However, a few metals (lead, aluminum, and possibly copper and zinc) were reported in aqueous samples at concentrations that might be injurious to sensitive aquatic species. The Ambient Water Quality Criterion (AWQC) (4-day average) for lead for the protection of freshwater aquatic life varies with water hardness. It is 1.3, 3.2, and 7.7 ug/l at water hardnesses of 50, 100, and 200 mg/l as CaCO₃, respectively. Lead was reported at levels of 6.5 to 11 ug/l. Elevated levels of lead (246 to 470 mg/kg) were measured in sediment samples from the lake and canal. A level of 20 mg/kg has been reported as a typical average for sediments. 13

Although there is no AWQC for aluminum, a concentration of 100 ug/l has been reported to be lethal to a fish species (stickleback) after 1 week of exposure. Although copper (up to approximately 16 ug/l) and zinc (approximately 55 ug/l) could not be confidently identified in aqueous samples due to blank contamination, if present at the reported concentrations, they could potentially be injurious to some sensitive aquatic species. The AWQC for zinc is 47 ug/l, for copper it is 6.5, 12, and 21 ug/l at water hardnesses of 50, 100, and 200 mg/l as CaCO₃, respectively. 12, 15

Site Name: Levittown Dunffled)

TDD No.: F3-8504-12

Antimony was measured in sediment samples from the lake and canal at concentrations (22 to 49 mg/kg) higher than a typical range (0.05 to 1.5 mg/kg) reported for sediments. 16

At the measured levels, the inorganics reported in surface water samples would not be expected to pose any health hazards to fish consumers.

Prepared by:

Asabel Mandelbaum, Ph.D.

Toxicologist'

Date: September 13, 1985

Reviewed by:

Kenneth Symms, Ph. D., Toxicologist

Date: September 13, 1985

Site Name: Levittown Dump 10 TDD No.: F3-8504-12 (Red)

LIST OF SOURCES

- 1. Federal Register. June 12, 1984. National Primary Drinking Water Regulations: Volatile Synthetic Organic Chemicals; Proposed Rulemaking. 49(114):24330.
- 2. Herbicide Handbook. 1983. Champaign, Illinois: Weed Society of America.
- 3. Hayes, W.J., Jr. 1975. Toxicology of Pesticides. Baltimore: The Williams and Wilkins Company.
- National Academy of Sciences. 1980. Drinking Water and Health, vol. 3.
 Washington, D.C.: National Academy Press.
- National Academy of Sciences. 1977. Drinking Water and Health, vol. 1.
 Washington, D.C.: National Academy Press.
- 6. U.S. Environmental Protection Agency. 1979. Water-Related Fate of 129 Priority Pollutants. Vol. II. No. PB80-204381.
- 7. U.S. Environmental Protection Agency. 1976. Quality Criteria for Water. U.S. Government Printing Office No. 055-001-01049-4.
- 8. U.S. Environmental Protection Agency. 1980. Ambient Water Quality Criteria for Polynuclear Aromatic Hydrocarbons (Office of Water Regulations and Standards). EPA PB81-117806.
- 9. Sax, I.N. 1984. <u>Dangerous Properties of Industrial Materials</u>, 6th ed. New York: Van Nostrand Reinhold Company.
- U.S. Environmental Protection Agency. 1979. Water-Related Fate of 129 Priority Pollutants. Vol. I. PB80-204373.

TDD No.: F3-8504-12 (Red)

- U.S. Environmental Protection Agency. 1980. Ambient Water Quality Criteria for Chlordane (Office of Water Regulations and Standards). EPA PB81-117384.
- 12. Federal Register. July 29, 1985. Water Quality Criteria; Availability of Documents. 50(145):30784.
- 13. Andrew-Jones, D.A. 1968. The application of geochemical techniques to mineral exploration. Mineral Industries Bulletin 116:31.
- 14. Murdock, H.R. 1953. Industrial Wastes. Some data on toxicity of metals in wastes to fish life are presented. Ind. Eng. Chem. 45:99A.
- 15. U.S. Environmental Protection Agency. 1980. Ambient Water Quality Criteria for Zinc (Office of Water Regulations and Standards). EPA PB81-117897.
- 16. National Research Council of Canada. 1982. Data Sheets on Selected Toxic Elements. Publication No. 19252 of the Environmental Secretariat.

APPENDIX A

			-
			-
		•	
			_
			-
			-
			-
			-
			`
			_
			-
			-
			-
			-
			•
			-
			_
			-
			•
			Þ

COST CENTER:				2. NO. :	
	REM/FIT ZONE CONTRACT TECHNICAL DIRECTIVE DOCUMENT (TDD)				
GCCOUNT NO.:	Legimore	Diffe of the boots and the boots and the boots are the boots and the boots are the boo	F3-8504-12		
3. PRIORITY:	4. ESTIMATE OF TECHNICAL HOURS:	5. EPA SITE ID:	6. COMPLETION DAT	E: 7. REFERENCE INFO.:	
HIGH MEDIUM LOW S. GENERAL TASK DESCRI	180 4A. ESTIMATE OF SUBCONTRACT COST:	PA-282 5A. EPA SITE NAME: Levittown Dump Levittown, PA pling at the subject sit	3 wks. after QA	A YES NO ATTACHED PICK UP Contact: Doug Hill	
3. GENERAL PACK GESCH					
1.) Review bac 2.) Obtain resi 3.) Prepare an 4.) Coordinate 5.) Coordinate 6.) Conduct on 7.) Take and si 8.) Scan analy: Prepare an 11 Distribution of the size of	ckground information. Idential well information d submit sampling plan e lab analysis, EPA will a e all access requirement and off site inspection hip samples according to tical results immediatel d submit field trip report Michis project to be performed bottom boat will be recorded request form for a	n & local water supplied to EPA for approval. arrange for 15 day turn s. s and sampling. o standard protocol. y upon receipt for heal of the conditional information. s with Doug Hill	th risk concerns.	and inform EPA.	
NY INDONESIA MAINTANINA MARIAMBANIANA NY INDRA MANDRISHA NI ANDRA MARIAMBANA NY INDRA MARIAMBANA NY INDRA MARIA		County Code 017		1 DATE.	
13. AUTHORITING (PO)				4. DATE:	
	(SIGNATUR	(E)			
1- RECEIVED BY:	ACCEPTED ACC	CEPTED WITH EXCEPTIONS	REJECTED 1	6. DATE:	
	(CONTRACTOR RPM	SIGNATURE)			

	ge-
	(pro-
	66
	e
	e.
	3 01
	ign-
	M ₹°
	æ-n
	j t=-
	ike:
	£,:
	*
	₩÷.
	₿o-
	ke -
	3
	r

APPENDIX B

SOURCE: (7.5 MINUTE SERIES) USGS TRENTON WEST, PA. QUAD.

SITE LOCATION MAP LEVITTOWN DUMP, LEVITTOWN, PA. SCALE 1:24000

SOURCE: (7.5 MINUTE SERIES) USGS TRENTON WEST, PA. QUAD.

PHOTO LOCATION MAP
LEVITTOWN DUMP, LEVITTOWN, PA.

(SCALE UNKNOWN)

APPENDIX C

TDD NO: F3-8504-12

EPA SITE	NO.:	PA-282
REGION:	Fct	Transal.

QUALITY ASSURANCE REVIEW OF ORGANIC ANALYSIS LAB DATA PACKAGE

Case No.: 4248	Ар	plicable Sam	ple No's.: <u>CA104</u>	CA105.	CA106
Contract No.: 68-01-67			109. CA 110. C	,	7179.
Contract Laboratory: VERS		, , , , , , , , , , , , , , , , , , , 	183. CA185		
Applicable IFB No.: WA83-		, , , , , , , , , , , , , , , , , , ,	7		
Reviewer: Rock T. V.					
Review Date: 819185					
The organic analytical data for summarized in the following tal	this case has been ble:	en reviewed.	The quality assura	ance evalua	tion is
Reviewer's Evaluation*		Fract	ion		7
	VOLATILES	ACIDS	BASE/ NEUTRALS	PCB/ PEST.	TCDD
Acceptable	V			V #1 #5	
Acceptable with exception(s)			1/42, #3, #4		Not
Questionable					Auchard
Unacceptable					7
* Definitions of the evaluation: This evaluation was based upon	•		. •		
This evaluation was based upon	an analysis of the				
 DATA COMPLETENESS 		•	RGET COMPOUND		-
BLANK ANALYSIS RESUIT			TATIVELY IDENTI		
SURROGATE SPIKE RESU		_	ROMATOGRAPHIC		
MATRIX SPIKE RESULTS		-	PP AND BFB SPEC	TRUM TUN	E RESULTS
DUPLICATE ANALYSIS R		_	NDARDS	,	
O EVALUATION OF CONFI			BRATION CHECK		
O QUANTITATIVE CALCUL	ATIONS	O INTI	ERNAL STANDARD	S PERFOR	MANCE
Data review forms are atta	ched for each of	the review it	ems indicated above	e.	
† No errors noted, no form a	ttached.				
Spot Check performed.	0.0				
Comments: #1 Case se	e blank on	whyri -l	indune, raised	D.L.s by	Lab.
#2 Please 40	e initial a	continue	ng Calibration	no (benzid	ine a benzo(ghi
#3-1 tailed 3	2 CCC comp	n-dun	o effect on dat	<u>د</u>	1,0,1
#4-No Lab 6	lack for BN	As spb ru	mon 5/130/5/	14- Amce	Ma
	evelts no e	flect and	ata	1	
#5 fulled a	me pesticide	Criteria	_ (% defference	cobbratio	m forton)
honere to	un does no ef	fect data	·		<u> </u>

- ACCEPTABLE: Data is within established control limits, or the data which is outside established control limits does not affect the validity of the analytical results.
- ACCEPTABLE WITH EXCEPTION(S): Data is not completely within established control limits. The deficiences are identified and specific data is still valid, given certain qualifications which are listed below.
- QUESTIONABLE: Data is not within established control limits.

 The deficiences bring the validity of the entire data set into question. However, the data validity is neither proved nor disproved by the available information.
- <u>UNACCEPTABLE</u>: Data is not within established control limits.

 The deficiences imply the results are not meaningful.

RAFFIC REPORT # CA1 AB 1.D. # 24 UN DATE/TIME ARGET COMPOUND TAB. ENT. 1.D. COMPOUND TAB. URROGATE RECOVERY C SCREEN TABULATION C/MS CHROMATOGRAMS ARGET CMPD. QUAN. LIST ARGET CMPD. SPECTRA ENT. 1.D. CMPD. Q.L. ENT. CMPD. LIB. SRCH. HRO./SENS. CHECKS		05 886		08 90G		926	17 93G	79 94G	81 956	83	85 976	free?
AB I.O. # 24 JN DATE/TIME ARGET COMPOUND TAB. ARGET COMPOUND TAB. ENT. I.D. COMPOUND TAB. JRROGATE RECOVERY C SCREEN TABULATION C/MS CHROMATOGRAMS ARGET CMPD. QUAN. LIST ARGET CMPD. SPECTRA ENT. I.D. CMPD. Q.L. ENT. CMPD. LIB. SRCH. HRO./SENS. CHECKS	87G V- V- V- V- V-								95G			
ARGET COMPOUND TAB. ARGET COMPOUND D.L. ENT. I.D. COMPOUND TAB. URROGATE RECOVERY C SCREEN TABULATION C/MS CHROMATOGRAMS ARGET CMPD. QUAN. LIST ARGET CMPD. SPECTRA ENT. I.D. CMPD. Q.L. ENT. CMPD. LIB. SRCH. HRO./SENS. CHECKS												
ARGET COMPOUND D.L. ENT.I.D. COMPOUND TAB. URROGATE RECOVERY C SCREEN TABULATION C/MS CHROMATOGRAMS ARGET CMPD. QUAN.LIST ARGET CMPD. SPECTRA ENT.I.D. CMPD. Q.L. ENT. CMPD.LIB. SRCH. HRO./SENS.CHECKS												
ENT. I.D. COMPOUND TAB. JRROGATE RECOVERY C SCREEN TABULATION C/MS CHROMATOGRAMS ARGET CMPD. QUAN. LIST ARGET CMPD. SPECTRA ENT. I.D. CMPD. Q.L. ENT. CMPD. LIB. SRCH.												
URROGATE RECOVERY C SCREEN TABULATION C/MS CHROMATOGRAMS ARGET CMPD. QUAN.LIST ARGET CMPD. SPECTRA ENT. I.D. CMPD. Q.L. ENT. CMPD.LIB. SRCH. HRO./SENS. CHECKS												
C SCREEN TABULATION C/MS CHROMATOGRAMS ARGET CMPD. QUAN.LIST ARGET CMPD. SPECTRA ENT. I.D. CMPD. Q.L. ENT. CMPD.LIB. SRCH. HRO./SENS. CHECKS												
C/MS CHROMATOGRAMS REGET CMPD. QUAN.LIST REGET CMPD. SPECTRA ENT. I.D. CMPD. Q.L. ENT. CMPD.LIB. SRCH. HRO./SENS. CHECKS												
RGET CMPD. QUAN.LIST RGET CMPD. SPECTRA ENT. I.D. CMPD. Q.L. ENT. CMPD.LIB. SRCH. HRO./SENS. CHECKS												
NT. I.D. CMPD. Q.L. ENT. CMPD. LIB. SRCH. HRO./SENS. CHECKS		,										
ENT. I.D. CMPD. Q.L. ENT. CMPD.LIB. SRCH. HRO./SENS. CHECKS	V* V /	<i>.</i>										
ENT. CMPD.LIB. SRCH.	/	<i>-</i>										
RO./SENS. CHECKS	/-											
	/-		11									
B/BFTPP TUNE DATA	7											
AREAS CHARTS	NIR-											
. REL. RESP. FORM	NR											- ' \
& AMTS. CALIB. CHK.	/ -					·						. 7
8 AMTS 3-PT CALIB.	V -											
romatograms : Callb. Chk.	V -											$\overline{}$
romatograms: 3-Pt. Calib.	V-											
EARITY: 3-PT. CALIB	V											
COMPARISON	V-											
MPLE/FIELD BLANK											V	
THOD/INSTR. BLANK												<u></u>
B DUPLICATE												
ELD DUP/REP												
()												
T N	omatograms: Callb.Chk. omatograms: 3-Pt.Callb. EARITY: 3-PT.CALIB COMPARISON APLE/FIELD BLANK THOD/INSTR. BLANK	omatograms: Calib. Chk. omatograms: 3-Pt. Calib. EARITY: 3-PT. CALIB COMPARISON APLE/FIELD BLANK THOD/INSTR. BLANK B DUPLICATE D DUP/REP	omatograms: Calib. Chk. omatograms: 3-Pt. Calib. EARITY: 3-PT. CALIB COMPARISON APLE/FIELD BLANK THOD/INSTR. BLANK B DUPLICATE LD DUP/REP	omatograms: Calib. Chk. omatograms: 3-Pt. Calib. EARITY: 3-PT. CALIB COMPARISON APLE/FIELD BLANK THOD/INSTR. BLANK B DUPLICATE LD DUP/REP	omatograms: Calib. Chk. omatograms: 3-Pf. Calib. EARITY: 3-PT. CALIB COMPARISON APLE/FIELD BLANK THOD/INSTR. BLANK B DUPLICATE D DUP/REP	omatograms: Calib. Chk. omatograms: 3-Pt. Calib. EARITY: 3-PT. CALIB COMPARISON APLE/FIELD BLANK THOD/INSTR. BLANK B DUPLICATE LD DUP/REP	omatograms: Calib. Chk. omatograms: 3-Pt. Calib. EARITY: 3-PT. CALIB COMPARISON APLE/FIELD BLANK THOD/INSTR. BLANK B DUPLICATE LD DUP/REP	omatograms: Calib. Chk. omatograms: 3-Pt. Calib. EARITY: 3-PT. CALIB COMPARISON APLE/FIELD BLANK THOD/INSTR. BLANK B DUPLICATE LD DUP/REP	omatograms: Calib. Chk. omatograms: 3-Pt. Calib. EARITY: 3-PT. CALIB COMPARISON APLE/FIELD BLANK THOD/INSTR. BLANK B DUPLICATE LD DUP/REP	omatograms: Calib. Chk. omatograms: 3-Pt. Calib. EARITY: 3-PT. CALIB COMPARISON APLE/FIELD BLANK THOD/INSTR. BLANK B DUPLICATE LD DUP/REP	omatograms: Calib. Chk. comatograms: 3-Pt. Calib. EARITY: 3-PT. CALIB COMPARISON APLE/FIELD BLANK THOD/INSTR. BLANK B DUPLICATE LD DUP/REP	omatograms: Calib. Chk. Omatograms: 3-Pt. Calib. EARITY: 3-PT. CALIB COMPARISON APLE/FIELD BLANK THOD/INSTR. BLANK B DUPLICATE LD DUP/REP

COMMENTS.	MIC-DOLAZAVIEZD
	* -no Positives REPORTED.
1	
	·

DAT												INHIBI	
COMPLET	ENESS CONC./MATRIX	16/AQ										Red)	1
	TRAFFIC REPORT #CA!	04	05	06	08	0-	10	77	79	81	83		Cref
FRACTION	LAB I.D. # 24			89G								976	
BNA !	RUN DATE/TIME	/-											
	TARGET COMPOUND TAB.	_/ -											
	TARGET COMPOUND D.L.	1/-											
	TENT. I.D. COMPOUND TAB.												
	SURROGATE RECOVERY	0											
	GC SCREEN TABULATION	1/ -											
	GC/MS CHROMATOGRAMS	V-											
	TARGET CMPD. QUAN. LIST												
	TARGET CMPD. SPECTRA	1											
	TENT. I.D. CMPD. Q.L.	1/-											
	TENT. CMPD.LIB. SRCH.	1/-											1
	CHRO./SENS, CHECKS	/_											
'	BPB/DFTPP TUNE DATA												
1	I.S AREAS CHARTS	NR										·	
	I.S. REL. RESP. FORM	NIP											
	RF & AMTS. CALIB. CHK.												
	RF B AMTS.: 3-PT CALIB.	V-											
	Chromatograms: Calib.Chk.												
	Chromatograms: 3-Pt. Calib.												
	LINEARITY : 3-PT. CALIB	V						_					
·	RF COMPARISON												
	SAMPLE/FIELD BLANK												
	METHOD/INSTR. BLANK											V	
	LAB DUPLICATE							•					<u> </u>
'	FIELD DUP/REP												
	MAT. SPK./M. STD.												
PEST. :	PESTICIDE TABULATION	V-											
	PEST. D.L. TABULATION												
	PESTICIDE CHRO.	V -											
	PESTICIDE STD. CHRO.	\ <u>\</u>											\Rightarrow
	PESTICIDE STD. I.D.	V-											
	2 nd COLUMN CONF.	Na*-											
	GC/MS CONFIRMATION	Na											
	PESTICIDE DUPLICATE												
	PESTICIDE SPIKE												
	PESTICIDE BLANK											V	1/
	STD SUMMARY	/-											
	LINEARITY CHK.	V-							· · · ·				
,	DEGRAD. CHK.	V-											\Rightarrow
	DBC RT SHIFT	V-											

N/a-not applicable * No positives reported - N/R-NoT Required.

KEY TO DATA COMPLETENESS FOR M

Abbreviation Used on Form	Description of Checklist Item
Conc./Matrix	Concentration category submitted in analysis request (low, med, hi); and matrix (sol., aq.)
Fraction	Fill in acid, base/neutral, acid/base/neutral, or volatiles analysis
Run Date/Time	Instrument run date (to be used for correlating calibration)
Target Cmpd. Tab.	Tabulated results for target compounds
Target Cmpd. D.L.	Detection limits for target compounds (actual/level indicated by screen
Tent. LD. Cmpd. Tab.	Tabulated results for tentatively identified compounds
Surr. Rec.	Surrogate recoveries results
GC Screen Tab.	Tabulated GC screen results indicating required level of followup
GC/MS Chromatograms	Chromatograms of GC/MS analysis runs
Target Cmpd. Quan. List	Target compounds quantitation list, showing areas, ret. times
Target Cmpd. Spectra	Enhanced and unenhanced spectra of target compound hits
Tent. LD. Cmpd. Q.L.	Quantitation list for tentatively identified compounds
Tent. Cmpd. Lib. Srch.	Spectra and library match spectra of tentatively identified compounds
Chro./Sens. Checks	EICP's and R.R.F.'s for chromatographic sensitivity checks
BFB/DFTPP Tune Data	Spectra intensity lists, and criteria comparison forms for BFB, DFTPP
I.S. Areas Charts	Internal standards area control charts and description of remedial action
I.S. Rel. Resp. Form	Internal standards relative response listings for each sample run
RF and amts.: Calib. Chk.	Tabulated response factors and amount injected for all cmpds. in calibration check
RF and amts.: 3-Pt. Calib. Chromatograms: Calib. Chk.	Tabulated response factors and amount injected for all empds. in 3-point calibration Chromatograms for calibration check standard
Chromatograms: 3-Pt. Calib.	Chromatograms for 3-point multilevel calibration standards.
Linearity: 3-Pt. Calib.	Tabulated correlation coefficient or relative standard deviation for calibration
RF Comparison	Tabulated comparison of calibration Response Factor with check standard
Sample/Field Blank	Equipment rinse or reagent water blank shipped with samples from field
Method/Instr. Blank	Method or instrument blank which is prepared at lab
Lab Duplicate	Sample which was split by lab for duplicate analysis
Field Dup/Rep	Sample which was split or collected twice in the field
Mat. Spk./M. Std.	Matrix spike or method standard (blind, or done by lab)
Pest. Tab.	Tabulated results for pesticides
Pest. D.L. Tab.	Tabulated detection limits for pesticides
Pest. Chro.	Chromatograms for pesticide screening
2 nd Cal. Conf.	Confirmation of pesticide results by using a second GC column and temperature
GC/MS Conf.	Confirmation of pesticide results by GC/MS analysis
Pest. Dup., Spk. Blk.	Pesticide duplicate, spike, and blank
Pest. Std. Chro.	Chromatogram of pesticide standard
Pest. Std. LD.	Pesticide standard identification form
TCDD	2,3,7,8-tetrachl orodiben zodioxin

TCDD Tab., D.L., EICP, Blk.

KEY TO SYMBOLS USED IN DATA COMPLETENESS TABLE

Symbol Symbol	Meaning	Symbol .	Meaning
	Data item present	I	Incomplete data item
NA	Data item not applicable or not required	NC	Data item not clearly explained
P	Data item within established control limits		(units of conc., etc)
F	Data item outside established control limits	* or [number]	See footnote
MS	Missing item	XX/XX/XX XX:XX	Date/Time of run (calibration, etc.)

TCDD tabulated results, detection limits, extracted ion current profile, blank

			C 12-1	8つ	l		1917
NOA	field/In	149		976	N	US	
BNA							N.D
PEST	Ų.						Beta-BHC (0,10y/c/0.05)&
VOA	Lablu	LQ	FR 20	N 1623	VEG	25AR	N.D
BNA		10		92	٧¢	rsar	N.D
Pest.		/		4248	V 2/	2542	Beta-BHC (0,03 1/0,05) 11 -#
NOA	\int		F0 29	1 633	151	RSOR	N'D
PEST	lahlun	he	Re) 1 5B	√£ Q	LSAR	Beta-BHC (D.02mg 1/ D.05)#7-#
COMMEN'	HALYTICAL DATES: ESULT REPORT	TA SUM	MARY	. TENT	AND CO	NFIRMED E	I WITH THE SAMPLE DATA IN A TABULATION FORM WITHIN TH ED COMPOUNDS IN BLANKS ARE LISTED ON A SEPARATE FOR BY REVIEWER.
(2) RE							OSTIGS, CHROMATOGRAM AND/OR SPECTRA:
<u>#3</u>	Remem c	-		_	nes	- ton	Undane since low level BHC peals
	77			/	/		
<u>></u> N	ote: N	ملما	لط				NA 5/14 or 5/13 - majority of
		of ak				1 July	Ses nut offect data fince no
	0						
-	-7 VOF	7 4	ab	b/a	nks	are	all present-applicable to splo.

BLANK ANALYSIS RESULTS FOR TARGET COMPOUNDSAL FRACTION TYPE CONC MATRIX SAMPLE # SOURCE OF H20 | CONTAMINANTS (CONCENTRATION / DETECTION) LIMIT)

REAGENT BLANK SUMM..RY

Case No. 4348 Contractor VERSAR, INC. Contract No.

FILE ID	DATE OF ANALYSIS	FRACTION	MATRIX	CONC.	M8T. 10	CAS NUMBER	COMPOUND (HSL.TIC OR UNKNOWN)	CONC.	UNITS	CRDL
29623	4/25/85	VOA	H20	4	HP	-	No Volatiles Detected			
29633	4/24/85	VOA	H20	L	HP		No Volatiles Detected No Volatiles Detected			_
3392 + 405	5/10/15	вид	H20	1	Finn 1	<u>5</u> 13-81-5	2,3- Dimethyl-1,3-Bytadiene	11	12/2	
# 473	' '						Tetrachloroethere	37	/ 0	
# 651						111-77-3	2- (2-Methoxy ethoxy) ethanol	13		
#1793		1		1		21941-49-8	1,13- Tetradecadiene	55	1	_
RB 4248	5-8-85	Part	H20	L	144		no pesticides detected			_
								-		

Comments:

[-	. ••	_				Vers						
MO AFFIC NO.	TOLUENE-08	VOL/	ATILE ETHANE-D4	MTRO- BENZENE-DS (41-180)	2-FLUORO- BIPHENYL (44-118)	TERPHENYL- 014 (33-128)	SEN	M-VOLATILI	PHENOL-05	2-FLUGRO - PHEMOL (23-121)	2,4,6 TRIBROMO- PHENOL (10-130)	DIBUTYL- CHLOREHOAT
104	111		90	68	79	77			81	83	96	100
105	104	103	93	70	80	84			78	81	103	68
106	96	95	97	71	72	67			81	78	80	62
108	98	96		72	73	62			76	71	83	100
109	94	96	97	62	83	£8.			69	72	104	68
110	95	96	98	63	82	76			67	68	96	82
177	96	97	103	65	83	74			63	60	85	66
179	104	103	93	62	81	66			65	હ	89	79
181	87	104	101	63	82	59			64	63	99	78
183	99	101	98	66	B	34			80	80	82	28*
185	92	102	96	99	116	120			103	101	101	/13
3 I	98	99	98	74	77	76			91	93	98	111
I	96	99	94	NA	NΑ	NA	,		NA	NA	NA	42+
79(MS)	102	101	100	AN	NA	NΑ			NA	NA	NA	NA
4 MSQ	98	102	45	NA	NA	NA			NA	NA	NA	NA
3 (MS)	NA	NA	NA	73	77	43			१४	80	28	NA
3 (MÝ)		NA	NA	71_	71	36			78	76	80	NA
4 (45	NA	NA	NA	NA	NA NA	NA NA			NA	NA	NA	86
-(MSD)	NA	NA	NA	NA	NA	NA			NA	NA	NA	76
			· ·	\rightarrow								

WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

68-01-6756

80 No	4248	Contract	or <u>VERSA</u>	R, INC.			Contra	ct No.			200
FRACTION	COMPOUND	CONC. SPIKE ADDED (ug)	SAMPLE RESULT	CONC.	REC	CONC.	REC	RPD	RPD	C LIMITS *	000
VOA	1,1-Dichloroethene	50	0	43.	86	49.	98	13	14	61:145	
SMO	Trichloroethene	50	0	45.	90	50.	700	177	14	71-120	1
SAMPLE NO.	Chlorobenzene	50	0	48.	196	51.	102	6	13	75-130	7
	Toluene	50	0	62.	124	69.	138*	Π	13	76:125	Noettec
<u>CA 179</u>	Benzene	50	0	54.	108	60.	120		11	76-127]
23	1,2,4-Trichlorobenzene	100.	9	74	74	72	72	3	28	39-98]
B/N 39	Acenaphthene	100	0	77	77	74	74	4	31	46-118	
SMO 44	2,4 Dinitrotoluene	100	0	74	74	71	71	4	38	24.96]
SAMPLE NO.	7 Di-n-Butyiphthalate	100	0	13	(13)	(13)	13	0	40	11:117	[0]
	Pyrene	100	ರಿ	85	85	70	70	19	31	26-127	
15	N-Nitroso-Di-n-Propylamine	100	0	72	72	71	71		38	41-116	}
_CA 183 @	1,4-Dichlorobenzene	100		73 ·	73	73	73	0	28	36-97	
ACID 54	Pentachlorophenol	200	0	179	90	182	91		50	9-103	1
SMO 5	Phenol .	200	σ	150.	75	151	76	1	42	12-89	1 :
SAMPLE NO.	2-Chlorophenol	ည၀	0	165.	83	158	79	5	40	27-123	Ì ;
ax	4-Chloro-3-Methylphenol	200	0	168	84	166	83	1	42	23.97	
CA 183 4	4-Nitrophenol	200	0	171	85 *	170	85.1	0	50	10-80	No effe
0007	Lindane	0.2	0	0.48	2404	0.39	1954	214	16	56-123	J-[2]
PEST	Heptachlor	0.2	0	0.16	80	0.14	70	13	20	40-131]
SMO	Aldrin	0.2	0	0.11	55	0	0*	2004	22	40-120 -	[3]
SAMPLE NO.	Dieldrin	0.5	0	0.34	68	0.34	68	0	18	52-126	
	Endrin	0.5	0	0.35	70	0.35	70	0	21	56-121	
<u>CA104</u>	4,4'DDT	0.5	0	0.37	72	0.35	70	6	27	38-127	
											-

ASTERISKED VALUES ARE OUTSIDE QC LIMITS.

APD:	VOAs O out of 5; B/N O out of 7; ACID O out of 5;	outside QC limits outside QC limits outside QC limits	RECOVERY:	VOAs out of _O; B/NO out of _17; ACID _2 out of _10;	outside QC limits outside QC limits outside QC limits
L'I	Actual D.L Do Di	outside QC limits	in CA183 may be al	PEST 3 out of 12;	outside QC limits
[2.	Beta-BHC reale i	mesent in ever	ything Calchas Reused	thd. L, but cert	cently a contributor
	effect is obvious	for the high i	ecney	,	U
[3	J Actual D.L Ros	aldrin in po	ande CA 10+ may le	e substantially	higher.

TENTATIVELY IDENTIFIED COMPOUND SAMPLE RESULTS

ALL TENTATIVE IDENTIFICATIONS OF CONFIDENT MATCHING QUALITY, WHICH AREN'T SUSPECTED NAL ARTIFACTS/CONTAMINANTS, ARE LISTED BELOW:

SAMPLE		SCAN #(S)	MATC TYPE SCO	ECTRUM H INDICE	SCORE		ON	COMPOU NAME	ND	COMMEN
CA104	NOA					NiD				
	BNA					N.D.				
	DIVIT		 	+		7012				
CO 105	1000	122				17	1.7	14 000 0		
CA105	AON	123	 	++		17 ug/c	$-V_{0}$	KNOWN	•	
	BNA	•				N'Q				
CA106	VOA					ND		····		
	BNA					· G.M.				
			1	T						
CAIOB	VOA					N.D				
	BNA					N.D				
	5144			+-+		Ails				
20100	1/00		 	+++		N.D				
CA109	VOA									
	BNA					N.D.				
CALLO	VOA			+		N·D				
	BNA			+		N.D.				
								•		
CA 117	Vor					NID				
	BNA					14.0				
2A179	VOA					N.D				
2111	BNA					0.V				
				1-1						
CA181	VOA		 	+ +		NID				· · · · · · · · · · · · · · · · · · ·
SA 1 01	-D-10			- 		NID.				
	BNA					1410,				
A183	VOA					NO				
	BNA					MiD.				
	L1					· · · · · · · · · · · · · · · · · · ·				
				\bot						
				1						
·										
				+-+						
			 							
				+						
			 	-						
				1						

BLANK ANALYSIS RESULTS FOR TENTATIVELY IDENTIFIED COMPOUNDS

ORIGINAL

ALL TENTATIVELY IDENTIFIED COMPOUNDS FOUND IN BLANK ANALYSES ARE LISTED BELOW: (Red)

SAMPLE #	FRACTION	SCAN #(S)	M TYPE	SPEC ATCH ISCORE	TRU	M ES ISCORE	ESTIMATED COMPOUND COMMENTS CONCENTRATION NAME
Reapertous	- VOA						No
- 1	BNA	305					Hugh (1-methylethylidene)-Cyclopropa
		473					11 Male (1-methylethylidene)-Cyclopopa. 37 KII PCE
			_	-	-		12 -11 1 no thank 2 due 16
		651	-	-	-		13 rell 1- methoxy-2-lmethoxy methoxy 55 rell 1,13-Tetra decadiene.
		1793	<u> </u>				Sough 1,13-Tetradecadiene.
							J , ,
Recent B14	VOA						IV.D.
3							
CAIGE	VOA				\vdash		ND
CA185		206	<u> </u>	├			NO
	BNA	305			L		15mg/c cyclohexene
		474			<u> </u>		4746/L PCE
		652					9.1212 1-methon-2-(methor, we thinks)-CThoras
		1795				 	9.1212 1-methon-2-(methon methons)-CThora
		1773	-	 			100911 1,13'-Tella decadiene
				—	<u> </u>		J
						†	
			-		_	 	
						ļ	•
						 	
					ļ	-	
						 	
							
						 	
						ļ	
						ļ	
	· · · · · · · · · · · · · · · · · · ·	<u></u>					
		_ *****					
							<u> </u>
			\vdash				
			\vdash				
1							

GC/MS TUNING AND MASS CALIBRATION Decafiuorotriphenyiphosphine (DFTPP)

	Case N	10. <u>4248</u>	Contractor	Versar	Inc. Co	ontract No.	68-01-0	0756
	Instru	nent ID Finn 1	Date5	13/15	Ti	me	1739 (neij	-
`	Lab IC	3397 #632	Data Release Auth	norized By:	- Sont	2		
	m/e	ION ABUNDANCE CRI			%RELATIVE ABU			
	51	30.0 - 60.0% of mass 19	98		48	1.53 /		
	68	less than 2.0% of mass	69		٥	<i>X5</i>	(1-	רך ¹
	69	mass 69 relative abunda	nce		49	, 74.		
	70	less than 2.0% of mass	89		() ,	(0) ¹
	127	40.0 - 60.0% of mass 19	38		42	.34 .		
	197	less than 1.0% of mass	198		٥	יטו_		
	198	base peak, 100% relative	abundance		100.	. 00	•	
	199	5.0 - 9.0% of mass 198			64	<i>ह</i> ह .		
	275	10.0 - 30.0% of mass 19	98		17.2	, oc		
	365	greater than 1.00% of m	nass 198		1.	38		
	441	present, but less than m	ess 443		6.	72		
	442	greater than 40.0% of m	nass 198		43.	17		
	443	17.0 - 23.0% of mass 44	12		٧.	25	(19	1)2

THIS PERFORMANCE TUNE APPLIES TO THE FOLLOWING SAMPLES, BLANKS AND STANDARDS.

Tune OK.

SAMPLE ID	LAB ID	DATE OF ANALYSIS	TIME OF ANALYSIS
STD 3379	File 3394 BNA 50mm std.	5/13/25	12:28
CA 104	File 3349 BNA LOW Water Sand		13:36
CA 105	File 3400		15;21
CA 106	File 3401		16:27
CA 198	File 3402		17:33
CA 109	File 3403		18:39
CA 110	File 3404		19:45
CA 177	File 3405		20:51
CA 179	File 3406		a1157
(A 181	File 34107 W	1	23,03
ĺ			
			000010
1			
			4404

¹ Value in parenthesis is % mass 69.

²Value in parenthesis is % mass 442.

GC/MS TUNING AND MASS CALIBRATION Decafluorotriphenylphosphine (DFTPP)

Case N	0. 4248	Contractor Vers	ar Inc. Contract No.	68201-6756
instrur	ment ID Finn 1	Date		1:41
Lab IC	3411 # 626	Data Release Authorized B	y:	
m/e	ION ABUNDANCE CRIT	TERIA	%RELATIVE ABUNDANCE	
51	30.0 - 60.0% of mass 19	8	57.75	
68	less than 2.0% of mass 6	99	0.84	(۱٫۲) ¹
69	mass 69 relative abundar	nce	54.98	
70	less than 2.0% of mass 6	9	0	(o)¹
127	40.0 - 60.0% of mass 19	8	42.18	
197 ,	less than 1.0% of mass 1	98	0	
198	base peak, 100% relative	abundance	100.00	

¹Value in parenthesis is % mass 69. ²Value in parenthesis is % mass 442.

199

275

365

441

442

443

THIS PERFORMANCE TUNE APPLIES TO THE FOLLOWING SAMPLES, BLANKS AND STANDARDS.

5.0 - 9.0% of mass 198

10.0 - 30.0% of mass 198

greater than 1.00% of mass 198

present, but less than mass 443

greater than 40.0% of mass 198

17.0 - 23.0% of mass 442

Tune OK.

6.49

17.78

1,46

5.81

(18.4)²

4/84

40.18

7.38

SAMPLE ID	LAB ID	DATE OF ANALYSIS	TIME OF ANALYSIS
STD # 3379	File 3412 RNA 50 m std	5/14/85	10:20
CA 106 (PI)	File 5413 BNA Low Water (Keinj)		12:07
CA 108 (RL)	File 3414		13:14
			·
	•		
			000011
	•		000011

GC/MS TUNING AND MASS CALIBRATION Decafluorotriphenylphosphine (DFTPP)

Case No. 4 248	Contractor .	Verson,	Inc.	Contract No.	68-01-6756
Instrument ID Finn 1	Date	5/10/85		Time	11:52
Lab ID _3386 # 622					
10 10 <u> </u>	- Data Helease	A001011200 071			

m/e	ION ABUNDANCE CRITERIA	%RELATIVE ABUNDANCE	
51	30.0 - 60.0% of mass 198	50.84	
68	less than 2.0% of mass 69	0.99 1.92)1
69	mess 69 relative abundance	51.49	
70	less than 2.0% of mass 69	0 (0))1
127	40.0 - 60.0% of mass 198	43,97	
197	less than 1.0% of mass 198	0	
198	base peak, 100% relative abundance	100.00	
199	5.0 - 9.0% of mass 198	6.94	
275	10.0 - 30.0% of mass 198	16,44	
365	greater than 1.00% of mass 198	1.45	
441	present, but less than mass 443	Q8.3	
442	greater than 40.0% of mass 198	43.49	
443	17.0 - 23.0% of mass 442	8.63 🖊 (.19.8)	2

Value in parenthesis is % mass 69.

THIS PERFORMANCE TUNE APPLIES TO THE FOLLOWING SAMPLES, BLANKS AND STANDARDS.

TUNE OK, W.

TIME OF ANALYSIS SAMPLE ID LAB ID DATE OF ANALYSIS 12:43 File 3387 BNA SH STD * 3376 160 mg 5/10/85 STO # 3377 File 3388 180 mg 13:51 STD # 3378 14:58 File 3389 16:07 STD # 3319 File 3390 STD # 3380 17:14 م مر File 3391 18:21 File 3392 Low Water Reagent Blow R.B File 3393 19:27 CA 483 Low Water Sample 20:33 CA 183 MS 3394 File 3395 21:39 CA 183 MSD 22:45 CA 185 File 3396

²Value in parenthesis is % mass 442.

GC/MS TUNING AND MASS CALIBRATION Bromofluorobenzene (BFB)

Instru	contractor VERSAR, INC. ment ID HP Date 4-18-85 Data Release Authorized By ION ABUNDANCE CRITERIA	Time 1645
50	15.0 - 40.0% of the base peak	23.8~
	10.5 40.04 01 11.6 0E3 peak	23.8
75	30.0 - 60.0% of the base peak	57.9
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of the base peak	8.7
173	Less then 1.0% of the base peak	∕ √ .
174	Greater than 50.0% of the base peak	89.7
175	5.0 - 9.0% of mass 174	7.2 / (8.0)1
176	Greater than 95.0%, but less than 101.0% of mass 174	88.7 - 98.91
177	5.0 - 9.0% of mass 176	-6.4 × (7.2) ²
1		

THIS PERFORMANCE TUNE APPLIES TO THE FOLLOWING SAMPLES, BLANKS AND STANDARDS.

Tune ok.

		•	<u> </u>
SAMPLE ID	LAB iD	DATE OF ANALYSIS	TIME OF ANALYSIS
Mexical Blank	29567	4-18-84	1730
20 pph Std	29568	. (1900
50 opb Sta	29569		2050
100 cpb Std	29570		2200
50 polo Stal	29571		2300
200 piph Std	29572	, ,	2345
			000012

¹Value in parenthesis is % mass 174. ²Value in parenthesis is % mass 176.

GC/MS TUNING AND MASS CALIBRATION

Bromofluorobenzene (BFB)

4248	VERCAR THE	68-01-6756
Case No	Contractor VERSAR, INC.	. Contract No
Instrument ID HP	Date 4-25-85	Time
	Data Release Authorized By:	

m/e	ION ABUNDANCE CRITERIA	%RELATIVE ABUNDANCE	
50	15.0 - 40.0% of the base peak	24.4	
75	30.0 - 60.0% of the base peak	50.0	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of the base peak	7.8	
173	Less than 1.0% of the base peak	01	
. 174	Greater than 50.0% of the base peak	85.0	
175	5.0 - 9.0% of mass 174	7.5	(8.8)1
176	Greater than 95.0%, but less than 101.0% of mass 174	83.1	(98.) 1
177	5.0 - 9.0% of mass 176	6.7	(8.0)2

¹Value in parenthesis is % mass 174.

THIS PERFORMANCE TUNE APPLIES TO THE FOLLOWING SAMPLES, BLANKS AND STANDARDS.

Tunefine · W.

Redi

SAMPLE ID	LAB ID	DATE OF ANALYSIS	TIME OF ANALYSIS
Method Blank	29623	4/25/85	1215
50 ppb Std	29624		/330
EPA# CA 104	29625		1700
EPA #CA 105	29626		1800
EPA #CA 106	29627	\	1915
EPA #CA 108	29628		2015
EPA #CA 109	29629		2120
EPA #CA 110	29630	- 	2200
EPA#CA 177	29631	Þ	2245
•			
			000012
			QUUUID.

²Value in parenthesis is % mass 176.

GC/MS TUNING AND MASS CALIBRATION

Bromofiuorobenzene (BFB)

117110	MEDGED THE	68-01-6756
Case No. 4248	Contractor VERSAR, INC.	Contract No.
Instrument ID HP	Date 4-26-85	Time 0750
Lab ID 29632	Data Release Authorized By:	2
Lab 10 Derosts	Data Release Authorized by:	

m/e ION ABUNDANCE CRITERIA

%RELATIVE ABUNDANCE

50	15.0 - 40.0% of the base peak	21.4	
75	30.0 - 60.0% of the base peak	50.5	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of the base peak	9.0	
173	Less than 1.0% of the base peak	Ø	
174	Greater than 50.0% of the base peak	89.3	
175	5.0 - 9.0% of mass 174	8.1 -	(9.0)1
176	Greater than 95.0%, but less than 101.0% of mass 174	86.2,	(96.5) 1
177	5.0 - 9.0% of mass 176	7.7	(8.9)2

¹Value in parenthesis is % mass 174. ²Value in parenthesis is % mass 176.

THIS PERFORMANCE TUNE APPLIES TO THE FOLLOWING SAMPLES, BLANKS AND STANDARDS.

Tune on W.

SAMPLE ID	LAB ID	DATE OF ANALYSIS	TIME OF ANALYSIS
Reagent Blank	29633	4-26-85	0840
50 ppb Std	29634	. (0930
CA' 179	2963 5		1040
CA 181	29636		1120
CA 183	29637		1200
CA 185	29638	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1314
A 179 (MS)	29639		1410
A 179 (MSD)	29640	<i>y</i>	1500
			00001
			00001

INITIAL CALIBRATION DATA Volatile HSL Compounds

68-01-6756

Instrument ID:.... Calibration Date:. 04/18/85

Minimum RF for SPCC is 0.300

Maximum MRSD for CCC is 30%

ABORATORY ID	29569	29569	29570	29571	29572				
COMPOUND	RF 20			RF 150	RF 200	RF	≴ RSD		
hloromethane	1.780	1.462			•	1.432	12.867	80	
Prososethane	1.670	1.569		1.416	1.342	1.482 !	8.059	:	
/inyl Chloride	1.918	1.821	1.743	1.743	1.727 :	1.790 !	4.001		
Chloroethane	1.173 :	1.162	1.089	1.089	1.100		3.288		
Methylene Chloride	2.263	1.960	1.767	1.767	1.752	1.902	10.320		
Acetone	1.390	0.949	0.637	0.637			37.784	-anyest	d3 L00
Carbon Disulfide	2.783	3.369	3.207	3.207	2.891				
1,1-Dichloroethene	1.110 ;	1.047	0.978	0.978	0.962		5.523		
1,1-Dichloroethane	2.315		2.026	2.026					
Trans-1,2-Dichloroethene				1.167	1.113	1.167	4.549	: 	
 Chloroform	3.368	3. 151	2.943	2.943	2.983				
1,2-Dichloroethane	; 3.178				2.898	3.095	3.446	1	
2-butanone	0.280				0.125			- only el	tects LC
1,1,1-Trichloroethane	0.710			: 0.676	0.637	0.685			
Carbon Tetrachloride	0.810				0.686	0.733	6.963	!!	
Vinyl Acetate	0.825	0.741	0. 668	0.668	0.628	0.706			
Bromodichloroethane	0.440			1. 0.445	1 0.423				1
1,2-Dichloropropane	0.068			: 0.079	1 0.078				i
Trans-1,3-Dichloropropen				: 0.272	0.259				;
Trichloroethene	0.390			0.337	0.330	0.354	6.965	! .!———	{ !
Dibromochloromethane	0. 470	0.474	0.437	0.437	0.433	0.450			!
11,1,2-Trichloroethane	. 0.278			1 0.277	1 0.277				;
Benzene	0.880				: 0.910				:
icis-1,3-Dichloropropene	0.940			: 0.982					:
2-chloroethylvinylether	0.198			0.198	0.199	0.202	3.791	: -!	; ;
:Bromoform	0.363	0.397	0.405						
12-Hexanone	: 0.943		: 0.452	: 0.452			-	Honly	ellects Li
1'4-Methyl-2-Pentanone	0.583	0.484	: 0.458	; 0.45E					:
iTetrachloroethene	0.563			1 0.477					:
11, 1, 2, 2-Tetrachloroethar				0.63	0.594	0.629	3.033	- ++	i •!
:Toluene	-! : 0.813	0.828	0.783	0.78	0.766				1
Chlorobenzene	1.258				9 1 1.167				1
Ethylbenzene	2.250				2.033				
1Styrene	1.193				9 : 1.117				;
!Total Xylenes	0.583			2 1 0.54	2 0.544	0.558	3.343	: 1	1

RF -Response Factor (subscript is the amount of ug/1)

CCC -Calibration Check Compounds (*) SPCC -System Performance Check Compounds (ee)

RF -Average Response Factor %RSD -Percent Relative Standard Deviation

FORM VI

CONTRACT LAB: INSTRUMENT IDENTIFIER: **VERSAR** CASE NO. 424 CONTRACT NO. CONTRACT NO. 6X - 01 - 6756
CALIBRATION DATE: 05-10-85
MINIMUM MEAN RF FOR-SPCC IS 0. 05
MAXIMUM XRSD FOR CCC IS 30% FINN1 * : CCE ** = 5PCC RF MEAN RF %RSD RF RF COMPOUND RF 160NO 3376 2. 025 2. 372 2. 615 120NO 3377 20NG 3380 50N0 BONG LIB FILE* 3378 3379 1. 619 2. 298 2. 330 1. 906 1. 381 1. 439 0. 335 1. 902 2. 727 3. 024 2. 317 1. 609 1. 922 2. 347 2. 611 2. 020 1. 853 2. 472 2. 676 7. 4 6. 8¥ 1.796 N-NITROSODIMETHYLAMINE 2. 617 2. 798 2. 147 1. 511 1. 516 0. 949 8. 5 ANTLINE BIS (2-CHLOROETHYL)ETHER 2. 029 1. 438 2. 084 1. 482 1. 475 6. 6 5. 1 1. 470 1. 432 0. 912 2-CHLOROPHENO 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1. 581 1. 405 0. <u>731</u> Ö. 989 0. 941 B30412319 1. 563 1. 423 1. 533 5. 345 1. 907 667 369 BENZYL ALCOHOL 1, 2-DICHLOROBENZENE 1. 335 1. 357 1. 604 1. 396 1. 683 1. 493 772 337 2-METHYLPHENOL 1.407 BIS(2-CHLOROISOPROPYL)ETHER 4.689 4-METHYLPHENOL 1.720 N-NITROSO-DI-N-PROPYLAMINE 1.981 1. 535 4. 647 1. 809 1. 385 0. 714 0. 926 0. 215 0. 279 0. 279 0. 279 0. 769 0. 129 1. 620 1. 510 1. 510 4. 415 1. 886 2. 554 0. 775 0. 540 0. 970 0. 408 0. 229 1. 521 4. 899 1. 867 2. 33174 0. 536 0. 958 0. 222 0. 381 5. 399 2. 013 2. 447 0. 769 0. 585 8. 1. 907 2. 286 8. 0. 723 0. 555 0. 988 0. 216 0. 371 0. 246 0. 452 0. 473 0. 861 HEXACHLORDETHANE 6. ፩. NITROBENZENE **≜*** ISOPHORONE 1. 027 0. 225 0. 331 Ō. 228 2-NITROPHENOL 2,4-DIMETHYLPHENOL
BENZOIC ACID
BIS(2-CHLOROETHOXY) METHANE
2,4-DICHLOROPHENOL
1,2,4-TRICHLOROBENZENE 0. 404 0. 262 0. 637 0. 298 0. 294 0. 178 0. 178 0. 520 0. 256 0. 270 0. 963 0. 290 0. 132 0. 305 0. 517 0. 589 0. 286 0. 288 0. 992 0. 590 0. 280 0. 279 ۵. 4. 5 9 4 0. 610 0. 281 3. 7 13. 9 15. 2 Ō. 0. 268 0. 491 0. 433 0. 876 0. 410 964 NAPHTHALENE 0. NAPHTHALENE
4-CHLOROANILINE
HEXACHLOROBUTADIENE
4-CHLORO-3-METHYLPHENOL
2-METHYLNAPHTHALENE
HEXACHLOROCYCLOPENTADIENE
2, 4, 6-TRICHLOROPHENOL
2, 4, 5-TRICHLOROPHENOL
2-CHLORONAPHTHALENE
2-NITROANILINE
DIMETHYL PHTHALATE 0. 414 0. 138 0. 356 0. 470 0. 143 <u>5</u>. 17 0. 123 0. 133 0. 356 0. 529 0. 270** 0. 365 0. 361 1. 070 0. 381 0. 572 0. 309 0. 387 0. 391 0. 363 0. 514 0. 278 0. 363 0. 361 1. 048 0. 377 0. 488 0. 295 0. 373 0. 363 0. 356 0. 556 0. 265 0. 369 1. 133 0. 614 1. 264 1. 713 0. 382 16. 4 **★** 3 5 0. 328 0. 320 1. 020 **5**. **833** 0. 640 1. 217 1. 603 14. 5. 0. 480 0. 667 1. 197 0. 772 0. 667 0. 480 1. 129 1. 699 0. 2058 0. 206 1. 412 0. 268 1. 194 0. 511 0. 198 2-NITROANILINE
DIMETHYL PHTHALATE
ACENAPHTHYLENE
3-NITROANILINE
ACENAPHTHENE
2,4-DINITROPHENOL
4-NITROPHENOL
DIBENZOFURAN
2,4-DINITROTOLUENE
2,6-DINITROTOLUENE
DIFFHYLPHTHALATE 1. 315 1. 716 0. 708 181 1. 490 0. 727 396 8. 39. 4 5. 6* 0. 581 0.846 0. 708 1. 164 0. 192 0. 545 1. 547 1. 549 1. 210 0. 213 0. 213 0. 213 0. /2/ 1. 044 0. 191 0. 343 1. 339 0. 419 0. 303 1. 262 0. 496 0. 988 0. 202 1. 074 0. 167** 55.9.8.6.5.4.5.0.4.6.5. 311.6.5.4.5.0.6.6.5. 1. 116 0. 166 0. 298 0. 387 1. 245 0. 427 0. 315 0. 316x* 0. 298 1. 531 0. 415 0. 303 1. 322 0. 546 1. 188 0. 227 1. 414 0. 407 0. 303 1. 279 0. 519 1. 216 0. 491 1. 054 0. 451 0. 186 0. 775 DIETHYLPHTHALATE 4-CHLOROPHENYLPHENYLETHER 1. 128 0. 313 0. 185 0. 765 FLUORENE 4-NITROANILINE 090 **1**. 1.096 0.198 0. 382 0. 200 0. 774 0. 173 0. 201 0. 102 4,6-DINITRO-2-METHYLPHENOL N-NITROSODIPHENYLAMINE 4-BROMOPHENYL-PHENYLETHER HEXACHLOROBENZENE 0. 127 0. 678 0. 162 0. 211 0. 198 0. 768 0. 765 0. 178 0. 214 0. 092 0. 942 0. 863 1. 102 0. 746 0. 184 0. 223 0. 105 1. 004 0. 948 1. 216 5. ó 3. 5 0. 187 0. 213 0. 182 0. 220 0. 097 0. 059 0. 946 0. 827 1. 121 0. 099 0. 852 0. 794 0. 901 18. 2 % PENTACHLOROPHENOL 1. 015 0. 927 1. 262 6. 7 0. 891 0. 821 PHENANTHRENE ANTHRACENE DI-N-BUTYLPHTHALATE FLUORANTHENE 12. 0 15. 9 4. 13. 2 Š* ÖÖŠ 0. 879 0. 006 879 0. 851 0. 010 505 0. 789 019 0.019 0.041€-47.T BENZIDINE 2. 471 0. 972 0. 231 1. 486 1. 573 1. 442 2. 422 1. 710 1. 472 1. 263 1. 103 3. 272 1. 332 0. 210 1. 791 2. 608 1. 243 0. 221 2. 453 1. 357 0. 274 1. 734 2. 812 1. 238 0. 223 3. 257 1. 288 PYRENE BUTYL BENZYL PHTHALATE
3,3'-DICHLOROBENZIDINE
BENZO(A)ANTHRACENE
BIS(2-ETHYLHEXYL)PHTHALATE 14. 0. 177 1. 658 1.670 1.668 6. 1 1. 736 1. 736 1. 569 3. 026 1. 770 1. 565 1. 142 1. 735 1. 573 4. 8 1. 793 1. 770 1. 566 3. 211 806 CHRYSENE 1. 683 3. 312 2. 036 1. 604 3. 122 10. 9 12. 02 10. 2 10. 2 39. 9 DI-N-OCTYL PHTHALATE
BENZO(B)FLUORANTHENE
BENZO(K)FLUORANTHENE
BENZO(A)PYRENE
INDENO(1,2,3-CD)PYRENE
DIBENZ(A,H)ANTHRACENE
BENZO(QHI)PERYLENE 3. 018 3. 122 2. 033 2. 082 1. 676 1. 018 0. 283 0. 180 963 2. 095 886 699 300 1. 585 1. 605 759 561 098 1. 132 182 185 1.062 Ō. 616 743 0. 821 0. 961 43. Q

Continuing Calibration Check Volatile HSL Commpounds

COMPOURED	RF	RF 50	× 0	CCC :	SPCC	
Chloromethane	1.432	1.327	7.337		++	*; ;
Bromomethane :	1.482 ;	1.344 ;	9.336 !			1
Vinyl Chloride :	1.790	1.562 ;	12,749	* :		1
Chloroethane :	1.123 :	1.001 ;	10.824 ;	:		;
Methylene Chloride :	1.902 ;	1.939	-1.972 ;	!		: -'
Acetone	0.829	0.672	18.945			-, -,
Carbon Disulfide :	3.091 :	2.552	17.439 :	;		:
1,1-Dichloroethene :	1.015 :	1.115 ;	-9.68 1 ;	• ;		}
1,1-Dichloroethane	2.136 !	2.477 !	-15.983 :	:	**	:
Trans-1, 2-Dichloroethene :	1.167 !	1.371	-17.481	!		
Chlorofors	3.077	3.134 (-1.843	+ :		1
1,2-Dichloroethane :	3.095 :	3.214 !	-3.855 (:		!
2-butanone :	0.179 ;	0.202	-13.102 1	ŧ		}
1,1,1-Trichloroethane !	0.685 :	0.669 :	2.393 !	;		1
Carbon Tetrachloride	0.733 :	0.564 ;	23.042			
Vinyl Acetate	0.706	0.810	-14.774			;
Bromodichloroethane :	0.444 ;	0.431 i	2 .899 !	;		1
1,2-Dichloropropane :	0.082	0.100	-21.704 1	/ +		}
Trans-1,3-Dichloropropenel	0.268 !	0.308 :	-15.026 :	;		!
Trichloroethene :	0.354 :	0.357	-0.772 :			! .!
Dibromochloromethane :	0.450	0.434	3.584			1
1,1,2-Trichloroethane	0.280 :	0.309 !	-10.318 :	!		
Benzene :	0. 897 !	1.050 !	-17.039 :	:		۱ _
cis-1,3-Dichloropropene !	0.975 {	1.046 !	-7.31 9 ;	1		: C
2-chloroethylvinylether !	0.202 !	0.239 !	-18 . 454			
Bromoform :	0.390	0.410	-5.155	;	##	1
2-Hexanone :	0.565	0.677 1	-19.802 !	:		:
'4-Mathy1-2-Pentanone	0.478	0.648 1	-35.612 !	1		
Tetrachloroethene :	0.502 1	0.686 !	-36.608 !	:		;
1,1,2,2-Tetrachloroethane:	0.629	0.726	-15.501	!	#	¦ -}
Toluene :	0.794	0.920	-15.816	•		ŀ
Chlorobenzene :	1.197 !	1.212 !	-1.216 :	1	**	ł
Ethylbenzene :	2.168 ;	2.467 1	-13.795 :	+ ;		i
Styr ene :	1.151 :	1.375 (-19 . 444	۱	١.	!
Total Xylenes :	0.558 ;	0.780 :	-39.793 🛧	only eft	ed W	ນ

RF50 -Response Factor from daily standard at 50 ug/l

^{10 -}Percent Difference

CCC -Calibration Check Compounds (*)

RF -Average Response Factor from initial calibration Form VI St. Form VII

Continuing Calibration Check Volatile HSL Copenounds

	Minimum RF for	SPCC is 0.30	O Maximum	10 for CCC i	s 25%
!	· _			1	!
COMPOUND	; RF ;	RF 50	10	: 000	SPCC
Chloromethane	1.432	1.419	0.912	!	++
Browomethane	1.482	1.453 :	1.983	:	1
Vinyl Chloride	1.790	1.725 !	3, 644	. •	:
Chloroethane	1.123		3.875	i .	:
Methylene Chloride	1.902	2.072 :	-8. 967	!	!
Acetone	0.829	0.869	-4.817	; 	!
Carbon Disulfide	3.091		8.865		1
1,1-Dichloroethene	1.015 ;		-22, 101	; •	:
1,1-Dichloroethane	2.136	2.704 !	-26.612 -	LLOQ	***
Trans-1,2-Dichloroetheme	1.167	1.418	-21 .508		;
Chloroform	3.077	3.725 !	-21.048	+	: !
1,2-Dichloroethane	3.095 !	3.509 !	-13.387	1	:
2-butanone	. 0.179 ;	0.200 ;	-11.982	1	:
l,1,1-Trichloroethane	0.685	0.734 1	-7.091	D	:
Carbon Tetrachloride	0.733	0.536 ;	26.863 -	LOO	!
/inyl Acetate	0.706	0.800	-13. 357		;
Browodichloroethane	0.444 (0.446	-0.481	!	:
1,2-Dichloropropane	0.082	0.102	-24.138	•	ŀ
Trans-1,3-Dichloropropene		0.313 :	-16.893	l	ł
[richloroethene	0.354	0.363	-2.465	 	!
)ibromochloromethane	0.450	0.426	5. 361		
l,1,2-Trichloroethane	: 0.280 !	0.332 :	-18.529		l
enzene	: 0.897 !	1.114	-24.173 :		1
cis-1,3-Dichloroprop ene	: 0.975 :	1.063	-9.063 (1
-chloroethylvinylether	! 0.202 ! !!	0.234 :	-15, 976 ;	 	!
rosofors	0.390 (0.433	-11.054		**
Hexanone	: 0.565 :	0.631 :	-11.662		}
4-Methyl-2-Pentanone	0.478 :	0.608 :	-27.241-1		
etrachloroethene	0.502	0.617 !	-22.868		
1,1,2,2-Tetrachloroethane	0.629	0.716 :	-13. 910 <i>\</i>		**
oluene	0.794	0.959	-20.725	•	
thlorobenzene	1.197	1.167 :	2.542		**
ithylbenzene	2.168 :	2.388 :	-10.151		
Styrene	1.151 (1.346 !	-16.925 !		
Total Xyl enes	0.558 ;	0.716 :	لـ 28. 323 ـ	- only Le	5Q

RF50 -Response Factor from daily standard at 50 ug/1

XD -Percent Difference

OK

00042

RF -Average Response Factor from initial calibration Form VI Form VII

CCC -Calibration Check Compounds (*)

SPCC -System Performance Check Compounds (#4)

CALIBRATION CHECK - SEMIVOLATILE HSL COMPOUNDS
CASE NO. 4248
CONTRACT NO. 68-01-6756
CALIBRATION DATE: 05-10-85
STANDARD FILE: 3390

UNIGINAL (Red)

c

STANDARD FILE: 3390 DATE: 5-10-85 TIME: 16 MAXIMUM % D FOR CCC IS	b: 07: 00	*: CCC **: SPCC
~~	MEAN	

CALIBRATION CHECK - SEMIVOLATILE HSL COMPOUNDS
CASE NO. 4248
CONTRACT LAB: VERSAR
CONTRACT NO. 68-01-6756
CALIBRATION DATE: 05-10-85
STANDARD FILE: 3378
DATE: 05-13-85
TIME: 12:28:00
MAXIMUM % D FOR CCC-IS 25

J. MAR. PAR

COMPOUND REAN RF(D) X D N-NITROSODIRETHYLAMINE 1.833 1.732 5.369 N-PIENDL 2.472 2.734 10.389 N-PIENDL 2.472 2.734 10.389 N-PIENDL 2.472 2.734 10.389 N-PIENDL 2.472 2.734 10.389 N-PIENDL 2.472 1.489 0.742 1.3-10-CHLOROPENZENE 1.472 1.489 0.742 1.3-10-CHLOROPENZENE 1.472 1.489 0.742 1.3-10-CHLOROPENZENE 1.472 1.489 0.763 1.3-10-CHLOROPENZENE 1.474 1.489 0.763 1.3-10-CHLOROPENZENE 1.374 1.402 0.389 1.3-10-CHLOROPENZENE 1.374 1.402 0.389 1.3-10-CHLOROPENZENE 1.374 1.402 0.389 1.3-10-CHLOROPENZENE 1.374 1.402 0.389 1.3-10-CHLOROPENZENE 0.734 1.402 0.389 1.3-10-CHLOROPENZENE 0.734 0.734 1.403	COMPO	MEAI UNID RF (N I) RF(0)	% D	
	HEXACHLOROBENZENE PENTACHLOROPHENOL PHENANTHRENE ANTHRACENE DI-N-BUTYLPHTHALA FLUORANTHENE BENZIDINE PYRENE BUTYL BENZYL PHTH 3,3'-DICHLOROBENI BENZO(A)ANTHRACEI BIS(2-ETHYLHEXYL CHRYSENE DI-N-OCTYL PHTHAL BENZO(B)FLUORANTI BENZO(K)FLUORANTI BENZO(A)PYRENE INDENO(1,2,3-CD) DIBENZ(A,H)ANTHRA	E 0. 20 0. 9	14	-1. 464 -16. 469* 8. 294 7. 647 8. 227 -31. 896* -49. 417 -4. 544 -14. 092 -12. 606 -7. 062 -25. 888 -5. 000 -21. 035 -1. 035 -5. 436* -39. 796 -15. 743 -95. 708	ccc Failed taker orrective action taker of control action taker its, system chacker or. D.L. unreliable

CALIBRATION CHECK - SEMIVOLATILE HSL COMPOUNDS
CASE NO. 4248
CONTRACT LAB: VERSAR
CONTRACT NO. 68-01-6756
INSTRUMENT IDENTIFIER: FINN1
CALIBRATION DATE: 05-10-85
STANDARD FILE: 3412
DATE: 05-14-85
TIME: 10: 20: 00
MAXIMUM % D FOR CCC IS 20:

MAXIMUM % D FUR CCC 15 425				
COMPOUND	MEAN RF(I)	RF(O)	% D	
COMPOUND N-NITROSODIMETHYLAMINE PHENOL ANILINE BIS (2-CHLOROETHYL)ETHER 2-CHLOROPHENOL 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE BENZYL ALCOHOL 1, 2-DICHLOROBENZENE 2-METHYLPHENOL BIS(2-CHLOROISOPROPYL)ETHER 4-METHYLPHENOL N-NITROSO-DI-N-PROPYLAMINE HEXACHLOROETHANE NITROBENZENE ISOPHORONE 2-NITROPHENOL 2, 4-DIMETHYLPHENOL BENZOIC ACID BIS(2-CHLOROETHOXY)METHANE 2, 4-DICHLOROPHENOL 1, 2, 4-TRICHLOROBENZENE NAPHTHALENE 4-CHLOROANILINE HEXACHLOROBUTADIENE 4-CHLORO-3-METHYLPHENOL 2, 4, 5-TRICHLOROPHENOL 2, CHLORONAPHTHALENE 2-NITROANILINE DIMETHYL PHTHALATE ACENAPHTHYLENE 3-NITROANILINE ACENAPHTHENE 2, 4-DINITROTOLUENE DIETHYLPHTHALATE 4-CHLOROPHENYLPHENYLETHER FLUORENE 4-NITROSODIPHENYLPHENYLETHER FLUORENE 4-NITROSODIPHENYLAMINE 4-BROMOPHENYLPHENYLETHER HEXACHLOROPHENOL PHENANTHENE PENTACHLOROPHENOL PHENANTHENE BENZOLANITROPHENOL PHENANTHENE BENZOLANITHENE	3244251446197166821100960369051007314764739983558422326928398391212 84604474619716682110096036905100134473998355843283391212 84604473588375592383987713527667001347647399835584328538391212 846044731971668211100000000000000000000000000000000	0. 097 0. 960 0. 915 1. 117 0. 675 0. 840 0. 226 1. 606 1. 541 1. 524 1. 910 1. 503 1. 469 0. 845 0. 672 0. 845	4. 387* 1. 936 6. 013 1. 366 -7. 511 -7. 028 -32. 148 1. 548 -3. 709 -2. 739 -2. 739 -14. 534 -5. 886* -25. 345 -18. 127 -94. 801	D. L. unreliable (all Splf) ant of control limits;
			1-SPCC QUIS	And Samuel Contract

Pesticide Evaluation Standards Summary

Case No. 424	8	Laboratory VERSAR	(Auri)
	68-01-6756	Column	
ate of Analysis_		Instrument ID/	

EVALUATION CHECK FOR LINEARITY

LABORATORY ID	P997	P996	P995	
PESTICIDE	CALIBRATION FACTOR EVAL. MIX A	FACTOR	CALIBRATION FACTOR EVAL. MIX C	% RSD (≤10%)
ALDRIN	2370	2590	29/0	10.1
ENDRIN	1830	1770	1810	Z.V
4,4'-DDT	1440	1360	1460	4.1
DIBUTYL CHLORENDATE	1250	1260	1270	1.

EVALUATION CHECK FOR 4,4°-DOT/ENDRIN BREAKDOWN - 2 Volu OK

	PERCENT BREAKDOWN EXPRESSED AS TOTAL DEGRADATION				
	EVAL. MIX B	EVAL. MIX B	EVAL. MIX B	EVAL. MIX B	
ENDRIN	/3	14	17		
4,4'-DDT	0	0	0		
ABORATORY ID	P996	P996	P996		
TIME OF	1843	0727	1622		

EVALUATION OF RETENTION TIME SHIFT FOR DIBUTYLCHLORENDATE and of

SMO SAMPLE NO.	LAB ID	TIME OF ANALYSIS	PERCENT DIFF. #	SMO SAMPLE NO.	LAB ID	TIME OF ANALYSIS	PERCENT DIFF. *
	1997	1801	0		P994	0437	0.15
	P996	1843	,07	CA 104 MSD		0570	.15
	P995	1926	.15	LA105		0602	.15
	P993	2008	-	CAICO		0645	.07
	P994	2050	.15		P996	0727	.07
	P153	2133	. 29	CA108		0809	. 29
	P452	225	.29	CA109		0852	.15
	P454	2258	-22	CAILO		0934	.07
	P455	2340	. 22	CA177		1017	,00
	P956	0023	.32	CA179		1059	. 15
	P957	0105	.22		P993	1142	_
Ĭ	P958	0147	-22	CA185		1224	.22
	P959	0230	-22	RB		1307	.07
CA104		0512	.22	LA181		1432	.07
CA 104 M3		0355	- 72		1996	1622	.22

≤ 2% PACKED, ≤ 0.3% CAPILLARY

	17
	**
	e
	e.
	3
	bir.
	y.
	Δ.
	z.
	t.
	٠